技术文章

钳型接地电阻检测仪快速高精度的测试能力

对于很多供电不稳定的地区,人们使用自有的发电设备、储能设备实现电能的自我供应。由于电能不能短时间大量存储,所以越是规模小的独立电网越难实现瞬时的功率平衡(供电功率与用电功率相等)。因此,对于大多数供电稳定的地区,将所有电力设备连接起来组成超级电网将更有价值。如今,快速增长的城市供电、发展快速的间歇性电源设备(如风能、光伏)和越发受到重视的电网保障,使得区域化的乃至全球化的大电网技术备受关注。

超级电网能够大幅提高电力使用率,有效避免能量浪费或是降额发电。虽然存储多余电能也是一种解决电能浪费的方法,但是大规模经济型电能存储装置的研发仍然看不到曙光。

另外,全球电网能够允许电力生产远离人口聚集的城市。例如,发电量*大的光伏电厂分布在人烟少的澳大利亚南部,而根据估算,澳大利亚整个国家的能源需求都可以由这些光伏电厂提供。通过位于东南亚的海底电缆,电力能够被调度至印度尼西亚、新几内亚岛甚至新加坡。超级电网的存在能够显著地减少备用发电容量。

那么如何去创建一个全球化的超级电网呢?技术上而言,本地电力运营商需要通过超高压直流输电(以下简称HVDC)系统连接远方的电力网络(大多数HVDC输电设备已经有成熟的解决方案)。除此之外,区域电力调度商们需要对电力交易规则、网络维护费用等标准达成一致。



一.注意(WBJD2000钳型接地电阻检测仪快速高精度的测试能力

感谢您购买了本公司的单钳口接地电阻测试仪,为了更好地使用本产品,请一定:

——详细阅读本用户手册。

——遵守本手册所列出的操作注意事项。


任何情况下,使用本钳表应特别注意事项。

注意本钳表所规定的测量范围及使用环境。

注意本钳表面板及背板的标贴文字。

开机前,扣压扳机一两次,确保钳口闭合良好。

开机自检过程中,不要扣压扳机,不能钳任何导线。

自检过程中显示“CAL6CAL5CAL4CAL0OLΩ”。

必须自检完成,显示“OL Ω”符号后,才能钳测被测对象。

钳口接触平面必须保持清洁,不能用腐蚀剂和粗糙物擦拭。

避免本钳表受冲击,尤其是钳口接合面。

危险场合,强烈推荐选用本公司的防爆型单钳口接地电阻测试仪。

本钳表在测量时会有蜂鸣声,这是正常的。

长时间不用本钳表,请取出电池。

拆卸、校准、维修本钳表,必须由有授权资格的人员操作。

由于本钳表原因,继续使用会带来危险时,应立即停止使用,并马上封存,由有授权资格的机构处理。

二.简介(WBJD2000钳型接地电阻检测仪快速高精度的测试能力

WBJD2000钳形接地电阻测试仪是传统接地电阻测量技术的重大突破,广泛应用于电力、电信、气象、油田、建筑及工业电气设备的接地电阻测量。

WBJD2000钳形接地电阻测试仪在测量有回路的接地系统时,不需断开接地引下线,不需辅助电极,可靠快速、使用简便。

WBJD2000钳形接地电阻测试仪能测量出用传统方法无法测量的接地故障,能应用于传统方法无法测量的场合,因为WBJD2000钳形接地电阻测试仪测量的是接地体电阻和接地引线电阻的综合值。

WBJD2000钳形接地电阻测试仪特别适宜于扁钢接地的场合。

三.规格(WBJD2000钳型接地电阻检测仪快速高精度的测试能力

1. 量限及准确度

2.技术规格

    源: 6VDC45号碱性干电池)               工作温度:-10-55
相对湿度:10-90                                 液晶显示器:4LCD数字显示,长宽47×28.5mm

钳口张开尺寸:28mm                                  钳表质量(含电池)1160g             
钳表尺寸:长285mm、宽85mm、厚56mm                 保护等级:双重绝缘
结构特点:钳口方式                                  量程换档:自动

外部磁场:<40A/m                                   外部电场:<1V/m

单次测量时间:1                                  电阻测量频率:>1KHz

电阻测量*高分辨率:0.001Ω                        电阻测量范围:0.01-200Ω


四.钳表结构(WBJD2000钳型接地电阻检测仪快速高精度的测试能力

1. 液晶显示屏

2. 扳机:控制钳口张合

3. 钳口: 65×32mm

4. POWER键:开机/关机

5. HOLD键:锁定/解除显示


五.液晶显示(WBJD2000钳型接地电阻检测仪快速高精度的测试能力

1.液晶显示屏

电池电压低符号                

电阻单位

数据锁定符号        

钳口张开符号

十进制小数点   

4LCD数字显示

2.特殊符号说明

.钳口张开符号,钳口处于张开状态时,该符号显示。此时,可能人为扣压扳机;或钳口已严重污染,不能再继续测量。

.电池电压低符号,当电池电压低于5.3V,此符号显示,此时不能保证测量的准确度,应更换电池。

OL Ω”符号,表示被测电阻超出了钳表的上量限。

L0.01Ω”符号,表示被测电阻超出了钳表的下量限。

3.显示示例

⑴.——钳口处于张开状态,不能测量

 ⑵.——被测回路电阻小于0.01Ω

⑶.——被测回路电阻为:5.1Ω

⑷.——被测回路电阻为:2.1Ω

——锁定当前测量值:2.1Ω

目前,交流输电技术获得广泛应用的关键在于电能能够通过变压器转换成更高电压。而高压输电线路意味着更小的电流,损耗也会随之减少。在电能接收端,也可以使用变压器降压,降压后再给当地供电。但对于HVDC输电来说,电压的变化就比较麻烦,基于电力电子技术的高压大容量直流变压器目前正在研发中,关键技术上并不存在任何的困难。电力工程师们大多认为HVDC技术更有前景,因为在相同电力传送容量情况下,直流输电的损耗远远小于交流输电系统。

那么HVDC输电到底能够减少多少损耗呢?众所周知,直流电流流过整个输电线路的导体,而交流电流往往从导体表面流过(集肤效应)。换句话说,对于同样的导体面积,交流系统的导体阻值相比于直流更高,更多电能将会以热量形式损耗掉。

另外,直流输电系统的占地面积远小于交流系统。例如,当以765kV交流电压进行6000MW电能传输时,需要三相三条输电线路,也就是说需要开辟大约180m宽的输电线走廊。相比之下,800kVHVDC输电系统仅仅需要80m宽的输电线走廊。

HVDC输电也使得不同频率电网互联成为可能。目前,变流器、线路、直流断路器等HVDC输电设备成本还非常高。所以仅当输电距离超过500kmHVDC输电才具有更佳的经济价值。但未来随着直流设备成本不断下降,HVDC输电的优势必然不断扩大。另外,当前电压源型变换器(VSC)、直流断路器、高温超导体线、电力电子器件的材料工艺等技术的飞速发展也正在有力推动着全球超级电网建设。



扬州万宝转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

产品目录
Copyright© 2003-2024 扬州万宝电力设备有限公司版权所有    地址:江苏省扬州宝应柳堡工业园万宝路1号    邮编:225828
电话:0514-88771393 0514-88778599     传真:0514-88771019    苏ICP备13035579号-3

多功能微机继电保护测试仪,多功能型钳形接地电阻仪,手持全自动变比测试仪,发电机水内冷直流高压发生器,无线高压变比测试仪,漏电流监控记录仪,三相相序表,非接触型检相器